Evaluating Biosurveillance System Components using Multi-Criteria Decision Analysis

Description: 

The evaluation of biosurveillance system components is a complex, multi-objective decision that requires consideration of a variety of factors. Multi-Criteria Decision Analysis provides a methodology to assist in the objective analysis of these types of evaluation by creating a mathematical model that can simulate decisions. This model can utilize many types of data, both quantitative and qualitative, that can accurately describe components. The decision-maker can use this model to determine which of the system components best accomplish the goals being evaluated. Before MCDA can be utilized effectively, an evaluation framework needs to be developed. We built a robust framework that identified unique metrics, surveillance goals, and priorities for metrics. Using this framework, we were able to use MCDA to assist in the evaluation of data streams and to determine which types would be of most use within a global biosurveillance system.

Objective:

The use of Multi-Criteria Decision Analysis (MCDA) has traditionally been limited to the field of operations research, however many of the tools and methods developed for MCDA can also be applied to biosurveillance. Our project demonstrates the utility of MCDA for this purpose by applying it to the evaluation of data streams for use in an integrated, global biosurveillance system.
 

Primary Topic Areas: 
Original Publication Year: 
2012
Event/Publication Date: 
December, 2012

March 19, 2018

Contact Us

National Syndromic
Surveillance Program

Email:nssp@cdc.gov

The National Syndromic Surveillance Program (NSSP) is a collaboration among states and public health jurisdictions that contribute data to the BioSense Platform, public health practitioners who use local syndromic surveillance systems, Center for Disease Control and Prevention programs, other federal agencies, partner organizations, hospitals, healthcare professionals, and academic institutions.

Site created by Fusani Applications