Using cross-correlation networks to identify and visualize patterns in disease transmission


Syndromic surveillance data such as the incidence of influenza-like illness (ILI) is broadly monitored to provide awareness of respiratory disease epidemiology. Diverse algorithms have been employed to find geospatial trends in surveillance data, however, these methods often do not point to a route of transmission. We seek to use correlations between regions in time series data to identify patterns that point to transmission trends and routes. Toward this aim, we employ network analysis to summarize the correlation structure between regions, whereas also providing an interpretation based on infectious disease transmission. 

Cross-correlation has been used to quantify associations between climate variables and disease transmission. The related method of autocorrelation has been widely used to identify patterns in time series surveillance data. This research seeks to improve interpretation of time series data and shed light on the spatial–temporal transmission of respiratory infections based on cross-correlation of ILI case rates.



Time series of ILI events are often used to depict case rates in different regions. We explore the suitability of network visualization to highlight geographic patterns in this data on the basis of cross-correlation of the time series data. 

Primary Topic Areas: 
Original Publication Year: 
Event/Publication Date: 
December, 2010

June 27, 2019

Contact Us

National Syndromic
Surveillance Program

The National Syndromic Surveillance Program (NSSP) is a collaboration among states and public health jurisdictions that contribute data to the BioSense Platform, public health practitioners who use local syndromic surveillance systems, Center for Disease Control and Prevention programs, other federal agencies, partner organizations, hospitals, healthcare professionals, and academic institutions.

Site created by Fusani Applications